Kit de laboratório doméstico de engenharia genética

 

 

 

Descrição do Produto

NOTA: A maneira como podemos oferecer este kit a um preço tão baixo é encontrando as melhores ofertas com nossos parceiros e fabricantes. Isso significa que este kit leva de 1 a 2 meses para ser enviado. Por favor, seja paciente e entenda que estamos fazendo o possível para chegar até você.

Consulte-nos sobre códigos de desconto para nossas aulas on-line com a compra deste kit.

Escolha nossa opção de plano de pagamento no check-out para fazer 4 pagamentos mensais.Veja mais informações aqui .

Este kit inicial do laboratório de bricolage fornece todo o equipamento, reagentes e materiais necessários para começar em biologia molecular e engenharia genética. Além disso, inclui um  kit de genotipagem e suprimentos do nosso  kit DIY CRISPR  para que você possa realizar seus primeiros experimentos! Vem com tutoriais explicando a ciência e como usar o equipamento.

Este kit vem com

  • Máquina de PCR com tampa aquecida
  • Tubos de PCR
  • Um conjunto de 3 novas pipetas de grau laboratorial
  • Pontas de pipeta para cada pipeta
  • Caixa de eletroforese em gel de agarose e molde de gel com pente
  • Rack de tubo
  • Uma fonte de alimentação para executar a eletroforese
  • 2 powerchords
  • Almofada de aquecimento com temperatura controlada para culturas em crescimento
  • 10g Agarose
  • 50g de mistura de tampão TAE (27g de base Tris / 23g de acetato de Tris / 0,5g de EDTA)
  • 5g de sulfato de canamicina
  • 5g de ampicilina de sódio
  • 40g de ágar LB
  • 20g LB Media
  • Manga de 20 placas de Petri
  • Balanças de 0,01g – 200g e balanças
  • Óculos trans-eye-luminator e luz azul
  • 5 x 15mL Tubes
  • 5 x tubos de 50 ml
  • bactérias ativadas por luz pDusk, pDawn
  • pJE202 bactérias brilhantes bioluminescentes geneticamente modificadas
  • 100uL Gel Verde Mancha 10.000x
  • 500uL 5x Taq Master Mix
  • Corante de carregamento de DNA de 200 uL
  • 100uL 100bp DNA Ladder
  • 100uL 1kbp DNA Ladder
  • Kit de Genotipagem
  • Suprimentos do  kit DIY CRISPR
  • Microcentrífuga 10k novíssima

https://www.the-odin.com/genetic-engineering-home-lab-kit/

Síntese, caracterização e atividade fotocatalítica de nanocompósitos de óxido de grafeno reduzido/Hematita

Resumo: A fotocatálise é um ramo da química que usa luz para catalisar reações de interesse, por exemplo, para a degradação de compostos nocivos ao meio ambiente, síntese de substâncias químicas, ou até mesmo a quebra da molécula de água liberando hidrogênio e oxigênio. Nos últimos anos a Hematita (“alfa”-Fe2O3) se tornou bastante popular nessa área por ser um material extremamente disponível no planeta, ter baixa toxicidade, alta estabilidade e absorver radiação eletromagnética em uma faixa interessante do espectro solar. No entanto, desenvolvimentos ainda precisam ser feitos para explorar o seu potencial. Neste trabalho, com o intuito de diminuir a recombinação elétron-lacuna na Hematita, acoplamos esse material ao óxido de Grafeno reduzido (rGO), de forma a escoar os elétrons fotogerados mais facilmente. Com esse objetivo, dois tipos de nanocompósitos foram sintetizados, o primeiro deles através de uma rota hidrotermal com a ancoragem de nanobastões ocos de Hematita na superfície de óxido de grafeno (GO) que foi posteriormente reduzido quimicamente para rGO. Esse nanocompósito foi testado em uma aplicação modelo para degradação do corante azo Remazol Black B, obtendo 95% de descoloração em 35 minutos em uma solução contendo 25 mg/L de corante e 10 mg/L do fotocatalisador. O segundo nanocompósito foi sintetizado através de uma rota híbrida de eletrodeposição e deposição eletroforética sobre substratos transparentes condutores de óxido de estanho dopado com flúor (FTO) utilizando uma solução de FeCl3 com nanofolhas de GO suspensas que são reduzidas simultaneamente durante a deposição. O nanocompósito exibiu fotoatividade quase 80 vezes superior em comparação com um filme de Hematita eletrodepositado nas mesmas condições sem o rGO, quando aplicado na fotodecomposição de moléculas de água utilizando uma célula fotoeletroquímica (water splitting)

Fontehttp://repositorio.unicamp.br/handle/REPOSIP/335276

http://repositorio.unicamp.br/bitstream/REPOSIP/335276/1/Barauna_JairoBrenoFranciscoDeOliveira_M.pdf

 

 

 

 

Modelagem por homologia de receptores canabinóides CB1 e CB2 e estudos de docking

AUTORES: da Silva, J.A. (UNIVERSIDADE FEDERAL DE ALAGOAS) ; Silva, T.M.B. () ; Balliano, T.L. ()

RESUMO:Avaliou se os dados obtidos com os disponíveis na literatura, de moléculas como potenciais inibidores para receptores canabinóides CB1 e CB2, onde foi feito um estudo de modelagem molecular com CB1 e CB2, cuja estrutura tridimensional não disponível em banco de dados, foi obtida por modelagem por homologia; seguido de uma simulação de docking para o qual usamos moléculas de estrutura do sistema monoterpeno

PALAVRAS CHAVES: Modelagem por homologia; receptores canabinóides; docking

INTRODUÇÃO:No planejamento de um fármaco tem como base a informação estrutural do bioreceptor que permite a descoberta e síntese de compostos com complementaridade estérica, hidrofóbica e eletrostática ao seu sítio de ligação. Em todo este processo usamos a modelagem molecular como ferramenta. Como para os receptores canabinóides CB1 e CB2, o alvo protéico macromolecular ainda não foi determinado experimentalmente, construímos os modelos em um procedimento comparativo conhecido como modelagem molecular por homologia estrutural (SANTOS-FILHO; DEALENCASTRO,2003). Os canabinóides são uma classe de compostos que exerçam efeitos farmacológicos diretos sobre um determinado número de órgãos e normalmente relacionados ao sistema nervoso central.

MATERIAL E MÉTODOS:Para a obtenção dos modelos das proteínas CB1 e CB2 foi usado arquivos FASTA obtidos do banco de dados NCBI, então foi usado o software Modeller (SALI; BLUNDELL, 1993). Em seguida foi feito a simulação de docking como programa Autodock 4.2 (que usa algoritmo de busca, o algoritmo genético Lamarkiano), com um conjunto de moléculas das quais os melhores scores foi obtido com o ligante 1: 1- Hidroxi-6,6-dimetil-3-pentil-6H-benzo[c]cromeno-9-ácido carboxílico e ligante 2: 6,6,9-Trimetil-3-pentil-6H –benzo[c]cromeno-1,8-diol. O ancoramento foi verificado no sítio de ligação previsto por LIGSITE (HENDLICH; RIPPMANN, 1997). Desta forma obtemos dados de energia de ligação estimada, coeficiente de inibição e modo de ligação que puderam ser avaliados e comparados dados de referência (HOWLETt 2002).

RESULTADOS E DISCUSSÃO:Obtemos modelos C1 e CB2 com o programa Modeller e verificado a qualidade do modelo com o programa PROCHECK, que mostra que apenas poucos resíduos (1,8 % CB1 e 0,6 % CB2) estão em regiões desfavoráveis para o gráfico Ramachandran. Com a simulação de docking obtemos para CB1 Ligante 1, energia de ligação E= -9.09 kcal/mol e coeficiente de inibição Ki = 217.43 nM (nanomolar), interagindo com os resíduos Ser88 (ligação de hidrogênio de 1,82 A),Gly99, Trp241, Phe191; o Ligante 2 com a proteína CB2, E= -9.79 kcal/mol e Ki = 66.40 nM (nanomolar) interagindo com os resíduos tyr347, Leu76, Glu327 (1,97 A) e Lys219 (1,99 A); nos dois caso podemos verificar a possibilidade de interação com os resíduos do sítio de ligação conforme previsto pelo programa LIGSITE (Leis, Schneider ; Zacharias, 2010), os quais podem ser visto nas figuras 1 e 2 em anexo. Forma prevista do modo de ligação do Ligante 1, no sítio de ligação da proteína CB1.

Figura 2

Forma prevista do modo de ligação do Ligante 2, no sítio de ligação da proteína CB2.

CONCLUSÕES:Segundo os dados da literatura (HOWLWETT 2002), (MONTERO, et al, 2010) os Ligante 1 e 2 tem as melhores potencialidades dentro do conjunto de moléculas testadas, com relação aos valores de coeficiente de inibição estimados e com as características relacionadas a seletividade em relação aos receptores,característica desejável (DA SILVA; SILVA, 2006) visto que os ligantes 1 e 2 deve ter afinidade por um receptor canabinóide e pouca pelo outro. Assim o Ligante 1 teve E= -8.16 kcal/mol e Ki = 1.05 uM (micromolar); já para o Ligante 2 com CB, tivemos E= -8.18 kcal/mol e Ki = 1.01 uM (micromolar).

AGRADECIMENTOS:

REFERÊNCIAS BIBLIOGRÁFICA:DA SILVA, .V. ; SILVA H.T.P Revista eletrônica de farmácia Vol. IV (1), 15-26, 2007
SANTOS-FILHO, O. A. DEALENCASTRO, R. B Quim. Nova, Vol. 26, No. 2, 253-259, 2003
SIMON LEIS, SEBASTIAN SCHENIDER AND MARTIN ZACHARIAS In Silico Prediction of Binding Sites on Proteins;. Current Medicinal Chemistry, 2010, 17, 1550-1562
MONTEIRO, C; CAMPILLO,N. E.; GOYA. European Journal of Medicinal Chemistry 40 (2005) 75–83
SALI, A.; BLUNDELL, T. L. Comparative protein modeling by satisfaction of spatial restraints. Journal of Molecular Biology. v. 234, p. 779-815, 1993.
HOWLETT et al (2002) Pharmacol.Rev. 54 161.

 

 

Fonte: http://www.abq.org.br/entequi/2012/trabalhos/50/50-2-9867.html

SOFTWARE MODELLER – MODELAGEM POR HOMOLOGIA

 

Sobre MODELLER


O software é usado para homologia ou modelagem comparativa de estruturas tridimensionais de proteínas (1,2). O usuário fornece um alinhamento de uma seqüência a ser modelada com estruturas relacionadas conhecidas e MODELLER calcula automaticamente um modelo contendo todos os átomos não-hidrogênio. MODELLER implementa modelagem comparativa de estrutura protéica por meio da satisfação de restrições espaciais (3,4) e pode realizar muitas tarefas adicionais, incluindo modelagem de novo de loops em estruturas de proteínas, otimização de vários modelos de estrutura proteica em relação a uma função objetiva definida flexivelmente Alinhamento múltiplo de sequências de proteínas e / ou estruturas, agrupamento, pesquisa de bases de dados de sequências, comparação de estruturas de proteínas, etc. MODELLER está disponível para download na maioria dos sistemas Unix / Linux, Windows e Mac.

Várias interfaces gráficas para MODELLER estão comercialmente disponíveis . Há também muitos outros recursos e pessoas usando o Modeller em interfaces gráficas ou da web ou outras estruturas.

  1. B. Webb, A. Sali. Modelagem Comparativa de Estrutura Protéica Usando o Modeller. Current Protocols in Bioinformatics 54, John Wiley & Sons, Inc., 5.6.1-5.6.37, 2016.
  2. MA Marti-Renom, A. Stuart, A. Fiser, R. Sánchez, F. Melo, A. Sali. Modelagem comparativa da estrutura protéica de genes e genomas. Annu Rev. Biophys. Biomol Struct. 29, 291-325, 2000.
  3. A. Sali e TL Blundell. modelagem de proteína comparativa pela satisfação de restrições espaciais. J. Mol. Biol. 234, 779-815, 1993.
  4. A. Fiser, RK Do e A. Sali. Modelagem de alças em estruturas de proteínas, Protein Science 9. 1753-1773, 2000.

A versão atual do Modeller é 9.21 , lançada em 11 de dezembro de 2018. Atualmente, o Modeller é mantido por Ben Webb .

 

 

 

 

 

Fonte: https://salilab.org/modeller/

COMO SE COMPORTA O GRAFENO

  Ao nano revestir o cobre, os impulsos elétricos não passam mais pela superfície do material e sim pelos tubos magnéticos que são criados dentro das nano camadas, pois oferecem menor ou nenhuma resistência. Em contraponto o exterior dessas camadas é um isolante perfeito, pois ao medir a condutividade com o auxílio do multímetro na superfície do cobre, nada é detectado.

 

 

 

 

 

 

 

 

 

 

 

CELLO – Automação de design de circuitos genéticos.

Circuito de programação para biologia sintética

À medida que as técnicas de biologia sintética se tornam mais poderosas, os pesquisadores estão antecipando um futuro em que o projeto de circuitos biológicos será semelhante ao projeto de circuitos integrados em eletrônica. Nielsen et al. descreve o que é essencialmente uma linguagem de programação para projetar circuitos computacionais em células vivas. Os circuitos gerados nos plasmídeos expressos em Escherichia coli requeriam isolamento cuidadoso de seu contexto genético, mas funcionavam primariamente conforme especificado. Os circuitos poderiam, por exemplo, regular as funções celulares em resposta a múltiplos sinais ambientais. Tal estratégia pode facilitar o desenvolvimento de circuitos mais complexos por engenharia genética.

 

 

http://www.cellocad.org

Resumo estruturado

INTRODUÇÃO

As células respondem ao ambiente, tomam decisões, constroem estruturas e coordenam tarefas. Subjacentes a esses processos estão operações computacionais realizadas por redes de proteínas reguladoras que integram sinais e controlam o tempo de expressão gênica. Aproveitar essa capacidade é fundamental para projetos de biotecnologia que exigem tomada de decisões, controle, detecção ou organização espacial. Foi demonstrado que as células podem ser programadas usando circuitos genéticos sintéticos compostos de reguladores organizados para gerar uma operação desejada. No entanto, a construção de circuitos simples é demorada e pouco confiável.

JUSTIFICATIVA

A automação de projeto eletrônico (EDA) foi desenvolvida para auxiliar os engenheiros no projeto de eletrônicos baseados em semicondutores. Em um esforço para acelerar o projeto de circuitos genéticos, aplicamos princípios da EDA para permitir o aumento da complexidade do circuito e simplificar a incorporação da regulação gênica sintética em projetos de engenharia genética. Usamos a linguagem de descrição de hardware Verilog para permitir que um usuário descreva uma função de circuito. O usuário também especifica os sensores, os atuadores e o “arquivo de restrições do usuário” (UCF), que define o organismo, a tecnologia do gate e as condições operacionais válidas. Violoncelo ( www.cellocad.org) usa essa informação para projetar automaticamente uma seqüência de DNA que codifica o circuito desejado. Isso é feito por meio de um conjunto de algoritmos que analisam o texto Verilog, criam o diagrama de circuito, atribuem portas, equilibram restrições para construir o DNA e simulam o desempenho.

RESULTADOS

O violoncelo desenha circuitos desenhando uma biblioteca de portas lógicas booleanas. Aqui, a tecnologia de gate consiste de lógica NOT / NOR baseada em repressores. A conexão do gate é simplificada definindo os sinais de entrada e saída como fluxos de RNA polimerase (RNAP). Descobrimos que os portões precisam ser isolados de seu contexto genético para funcionar de forma confiável no contexto de diferentes circuitos. Cada porta é isolada usando terminadores fortes para bloquear o vazamento de RNAP, e a permutabilidade de entrada é melhorada usando ribozimas e espaçadores de promotores. Essas peças são variadas para cada porta para evitar quebras devido à recombinação. Medir a carga de cada porta e incorporar isso nos algoritmos de otimização reduz ainda mais a pressão evolutiva.

O violoncelo foi aplicado ao projeto de 60 circuitos para Escherichia coli , onde a função do circuito foi especificada usando o código Verilog e transformada em uma seqüência de DNA. As sequências de DNA foram construídas conforme especificado sem ajuste adicional, exigindo 880.000 pares de bases de montagem de DNA. Destes, 45 circuitos foram executados corretamente em cada estado de saída (até 10 reguladores e 55 partes). Em todos os circuitos, 92% dos 412 estados de saída funcionaram como previsto.

CONCLUSÃO

Nosso trabalho constitui uma linguagem de descrição de hardware para programação de células vivas. Isso exigiu o codesenvolvimento de algoritmos de design com portas que são suficientemente simples e robustas para serem conectadas por algoritmos automatizados. Demonstramos que os princípios de engenharia podem ser aplicados para identificar e suprimir erros que complicam as composições de sistemas maiores. Essa abordagem leva a uma genética altamente repetitiva e modular, em contraste com a codificação de redes regulatórias naturais. O uso de uma linguagem independente de hardware e a criação de UCFs adicionais permitirão que um único design seja transformado em DNA para diferentes organismos, terminais genéticos, condições de operação e tecnologias de gate.

 

 

Programação genética usando violoncelo.

Um usuário especifica a função de circuito desejada no código Verilog, e isso é transformado em uma sequência de DNA. Um circuito de exemplo é mostrado (0xF6); as curvas vermelha e azul são estados de saída preditos para populações de células, e as distribuições de preto sólido são dados de citometria de fluxo experimental. As saídas são mostradas para todas as combinações de estados do sensor; sinais de mais e menos indicam a presença ou ausência de sinal de entrada. RBS, local de ligao ao ribossoma; RPU, unidade promotora relativa; YFP, proteína fluorescente amarela

.Fig. 1 Visão geral do violoncelo.

A ) Usuários de violoncelo escrevem código Verilog e selecionam ou carregam sensores e um UCF. Com base no design do Verilog, uma tabela de verdade é construída a partir da qual um diagrama de circuito é sintetizado. Reguladores são atribuídos a partir de uma biblioteca para cada porta (cada cor é um repressor diferente). O desenho combinatório é então usado para concatenar partes em uma sequência de DNA linear. O SBOL Visual ( 101 ) é usado para os símbolos das peças. Flechas levantadas são promotores, círculos em hastes são isolantes de ribozimas, hemisférios são ERBs, setas grandes são seqüências codificadoras de proteínas e “T” s são terminadores. As cores das peças correspondem aos portões físicos. ( B) A especificação física para a UCF Eco1C1G1T1. O circuito e os sensores são inseridos em um plasmídeo; o outro plasmídeo contém o promotor de saída do circuito, que pode ser usado para dirigir a expressão de uma proteína fluorescente ou outro atuador. Ambos os plasmídeos devem estar presentes na cepa especificada para que o projeto seja válido.

 

Fig. 2 Atribuição de portões genéticos ao diagrama de circuito.

A ) Um conjunto de quatro portas baseadas em diferentes repressores (cores) conectados em várias permutações para construir diferentes funções de circuito. As entradas (A, B e C) são promotores de entrada do sensor; o promotor de saída do circuito (X) controla o gene de atuação. ( B ) As formas das funções de resposta da porta determinam se elas podem ser conectadas funcionalmente. O portão laranja (PhlF) tem um grande alcance dinâmico (linhas tracejadas) que atravessa o limiar do portão roxo (BetI). No entanto, na ordem inversa, os portões não se conectam funcionalmente. ( C) As relações combinatórias dos repressores da biblioteca de portas isoladas são mostradas nas posições a montante (porta A) e a jusante (porta B). A escala de cores à direita indica a mudança relativa (normalizada), calculada como a faixa máxima de saída que pode ser alcançada conectando a porta A ao gate B. Os números indicam diferentes RBSs. Os gráficos da esquerda e da direita mostram quando a porta A regula a posição 1 e a posição 2, respectivamente. Portões que são excluídos da posição 2 por causa do roadblock são mostrados em preto (fig. S9). ( D ) A probabilidade de encontrar um circuito funcional versus o número de portas lógicas. A probabilidade de um circuito funcional é definida como a probabilidade de uma atribuição aleatória passar na análise do limiar de entrada (fig. S31) e não possuir combinações de roadblocking. ( E) A convergência do algoritmo de atribuição de porta de recozimento simulado (fig. S28). Inserções de gráfico de barras: as barras pretas devem estar LIGADAS; as barras cinzas devem estar DESLIGADAS; o eixo y é a saída no RPU em uma escala de log e o eixo x é o estado de entrada (da esquerda para a direita: 000, 001, 010, 011, 110, 101, 110, 111). A pontuação do circuito ( S ) é definida como a razão entre o estado ON previsto mais baixo e o estado OFF previsto mais alto (fig. S26 e eq. S2). Um exemplo de pesquisa é mostrado para o diagrama de circuito nas inserções; as cores correspondem aos repressores atribuídos a cada porta ( Fig. 3B ).

Entradas correspondem à ausência ou presença de IPTG 1 mM (direita – / +) e aTc (2 ng / ml; esquerda – / +) ( 84 ). (B ) As arquiteturas dos portões isolados. Algumas portas têm várias versões com diferentes seqüências RBS. As seqüências de DNA do gate são fornecidas na tabela S8. ( C ) Um exemplo de uma função de resposta para uma porta NOT baseada no repressor PhlF. A mudança no limite para os três RBSs é mostrada. Os dados para todas as portas isoladas são mostrados na fig. S4 ( D ) O impacto de cada porta no crescimento celular como uma função da sua atividade de promotor de entrada. O crescimento celular foi medido como OD 600 e normalizada pelo crescimento do controlo não indutor de 6 horas após a indução ( 84 ). Os quatro portais que reduziram o crescimento em> 20% estão indicados. Barras de erro são um SD de crescimento celular normalizado [ eixo y em (D)] e a mediana [eixo y em (A) e (C); eixo x em (C) e (D)] para três experiências independentes realizadas no mesmo dia.

 

Continua em: http://science.sciencemag.org/content/352/6281/aac7341

NOVO PROCESSO DE PRODUÇÃO DE ÒXIDO DE GRAFENO À TEMPERATURA AMBIENTE

NOVO PROCESSO DE PRODUÇÃO DE ÒXIDO DE GRAFENO À TEMPERATURA
AMBIENTE
FRANCISLEI SANTA ANNA SANTOS1*
1 Msc. em Engenharia Química, UFBA, Salvador-BA, Fone: (71) 99978- 3702,francisleisantos@yahoo.com.br
Apresentado no
Congresso Técnico Científico da Engenharia e da Agronomia – CONTECC’2016
29 de agosto a 1 de setembro de 2016 – Foz do Iguaçu, Brasil

 

 

RESUMO: As tecnologias convencionais de obtenção do óxido de grafeno (OG) são de baixo rendimento e baixa reprodutibilidade. O baixo rendimento aumenta o preço do produto final. O grama do OG chega a ser vendido por $ 150 no mercado internacional. O alto preço do OG restringe as pesquisas aplicadas com esse material a poucos laboratórios especializados em nanotecnologia. O alto preço do óxido de grafeno e as limitações tecnológicas atuais inibem sua aplicação em larga escala pelas indústrias nacionais e estrangeiras. Objetiva-se por este trabalho, apresentar um novo processo de produção de óxido de grafeno (OG) a temperatura ambiente. O novo processo em patente é caracterizado pela oxirredução de uma substância rica em carbono a temperatura ambiente. A nova rota de processo pode ser usada para obtenção do OG nas escalas de laboratório e industrial. O produto obtido pela nova rota de processo de produção de OG foi caracterizado por Espectroscopia Raman, MEV, DRX e Microscopia Óptica. Os resultados mostram a formação de compostos do tipo grafíticos (característicos de OG) e carbono amorfo (aC).
PALAVRAS–CHAVE: óxido de grafeno, métodos de produção, carbono amorfo.

NEW PROCESS FOR PRODUCTION OF GRAPHENE OXIDE AT ROOM TEMPERATURE
ABSTRACT: Conventional technologies for obtaining graphene oxide (OG) are low-income and low reproducibility. The low yield increases the price of the final product. Gram’s OG comes to be sold for $ 150 on the international market. The high price of OG restricts the applied research with this  material a few specialized laboratories in nanotechnology. The high price of the graphene oxide and the current technology limitations inhibit its large-scale application of national industry and foreign. The objective for this work is to present a new graphene oxide production process (GL) at room temperature. The new process is characterized by the patent redox carbon-rich material at room temperature. The new process route can be used for obtaining GL on laboratory and industrial scale. The product obtained by the new route OG production process was characterized by Raman spectroscopy, SEM, XRD and optical microscopy. Results show the formation of graphitic compounds of the type (characteristic OG) and amorphous carbon (aC). KEYWORDS: graphene oxide, production methods, amorphous carbon.

INTRODUÇÃO
Atualmente, tem-se utilizado o termo grafeno de forma um pouco mais ampla, abrangendo não só o material original (formado por uma única folha com espessura monoatômica), mas também a uma família de materiais formados por duas, três, quatro folhas de grafeno empilhadas de forma organizada cujas propriedades são diferentes entre si, devido às diferentes interações entre as várias folhas em
cada estrutura (Mehl, 2014). O óxido de grafeno reduzido ou simplesmente grafeno, como é mais conhecido atualmente, foi o primeiro cristal bidimensional estável isolado, com seu longo sistema pconjugado, onde os elétrons estão confinados em duas dimensões, o que confere propriedades excepcionais (Zarbine et all., 2013) tais como condutividade elétrica, resistência mecânica, leveza entre outras peculiaridades que diversificam a sua aplicação.
O grafeno é o alótropo mais novo da família do carbono ao lado do diamante e do carbono amorfo. O grafeno foi isolado e caracterizado pela primeira vez em 2004, através de sucessivas etapas de PEELING de um pedaço de grafite, com o auxílio de uma fita adesiva. O trabalho rendeu o prêmio Nobel de física de 2010 a seus autores, A. Geim e K. Novoselov, da Universidade de Manchester.
(Zarbine et all, 2013).Outro método muito difundido de obtenção do grafeno a partir do grafite se chama ESFOLIAÇÂO QUÌMICA, onde procura enfraquecer as ligações que unem as folhas de grafeno.Existem mais de uma rota de processo estudada por vários pesquisadores, porém a mais conhecida usa o grafite natural como substância rica em carbono. Esse grafite é aquecido em solução ácida, (H2SO4, HCl entre outros) e ainda utilizando-se do recurso de micro-ondas para produzir o óxido de grafite. Este óxido, já com as folhas de grafeno distanciadas umas das outras, é lavado com água deionizada e submetido a um processo de esfoliação (separação das folhas) utilizando-se
ultrassom ou a expansão térmica. Formando assim, o óxido de grafeno que pode ser reduzido com hidrazina para obtenção do grafeno ou óxido de grafeno reduzido. Neste método, o grafeno é submetido a um processo agressivo que acaba provocando vários defeitos na estrutura molecular. Os defeitos inviabilizam a produção do grafeno em larga escala além de diminuir a qualidade desejada
através da ESFOLIAÇÂO QUÌMICA.

As rotas apresentadas acima são de baixo rendimento e alto impacto ambiental pela extração do grafite natural obtido pelo processo de extração mineral. Outra forma de obter o grafite que é através do processo CVD (Carbon Vapour Deposition). O CVD é um método que sintetiza o grafite a partir de gases ricos em carbono, em especial o etileno que é aquecido a 1400 oC em um forno especial. Nesta etapa, o grafeno se forma em filme único sobre um substrato metálico (cobre), porém ainda não se conseguiu produzir grafeno em larga escala com áreas maiores através do método CVD. Fato este que limita a reprodutibilidade do método em questão. Poucos países, por exemplo: EUA, China e Cingapura, produzem o óxido de grafeno em larga escala e comercializam a altos preços que variam de $50 a $250/ grama a depender da pureza. Esta realidade restringe as pesquisas aplicadas com esse material a poucos laboratórios no mundo e inibem os investimentos em inovação; apesar do comprovado potencial de impacto nos setores de energia, biomedicina, agricultura, industrial,
eletrônicos, energias renováveis, ambiental, aeronáutico, aplicações médicas, têxteis. A importância desse material é proporcional ao alto número de patentes publicadas nos últimos anos. Zarbin et all.(2013) afirma que o principal desafio ainda está no desenvolvimento de métodos massivos de produção de amostras de óxido de grafeno reduzido com qualidade estrutural, e com controle do número de camadas. Afirma Mehl (2014) que há um grande interesse no desenvolvimento de rotas de preparação do grafeno, que sejam viáveis do ponto de vista prático (com alto rendimento e pureza, com e boa qualidade estrutural) e economicamente viável.
Esse trabalho foi resultado do estudo individual sobre eletrólise, nanotecnologia e interação molecular que deram as bases teóricas para a construção do protótipo em funcionamento. O novo método brasileiro, cujo título da patente é “PRODUção de nanopartículas de carbono a temperatura ambiente” (BR 10 2016012475 1) foi denominado de “ROTA NHK” que neste trabalho foi usado para
obtenção de OG. O destaque do novo método está na reprodutibilidade, na baixa emissão de poluentes e controle das etapas de produção. O objetivo desse trabalho é apresentar um novo processo de produção do óxido de grafeno a temperatura ambiente.
MATERIAL E MÉTODOS
A substância rica em carbono usada neste novo processo de produção de óxido de grafeno foi o carbono natural; e constitui o eletrólito de uma célula eletrolítica onde será submetido aos processos de oxidação e redução.Os testes experimentais foram realizados em instalação adaptada a um laboratório que está, atualmente, localizado na cidade de Alagoinhas-BA. As pesquisas foram financiadas com recursos próprios.
O produto obtido pela “ROTA NHK”, foi analisado por espectroscopia Raman empregando-se um espectrômetro Raman Witec (Alpha 500), acoplado a um detector CCD Witec (modelo DV401ABV-352) do Laboratório de Corrosão e Proteção do IPT. A focalização do laser na amostra e a coleta da radiação espalhada foram feitas através de um microscópio óptico Witec (Carl Zeiss, Serien-Nr
334000409). Foi utilizada linha de excitação na região do infravermelho próximo em 785,0 nm de um laser de diodo (XTRA 00222, Toptica) e na região do visível em 532,0 nm de um laser de argônio (WiTec) e em 633,0 nm de um laser de hélio-neônio (Modelo 30584, Optics Inc.). Os espectros são resultado da média de dez espectros obtidos com tempo de integração de 1 s, utilizando-se rede de
difração de 600 linhas/mm; lente de aumento de 100x (número de abertura 0,55, CF Plan). A Figura 1 a seguir representa o novo método de obtenção de óxido de grafeno a temperatura ambiente. Onde mostra uma fonte rica em carbono natural (1), na concentração de 0,576g/ml que constitui o meio reacional. A carga positiva constitui o anodo (3) de prata onde ocorrerá a etapa de
oxidação das partículas de carbono para obtenção do grafito oxidado em suspensão. Em paralelo, o outro eletrodo inerte (ex: Ag, Au) é alimentado com carga negativa e constitui o catodo (3) onde ocorrerá a reação de redução do grafito oxidado a óxido de grafeno reduzido em suspensão. Cada eletrodo é conectado por fios condutores de eletricidade (5) e são imersos no reator (2) de 30ml de capacidade com massa total de 15g aproximadamente. Uma fonte de energia elétrica (4) gera a diferença de potencial (ddp) necessário para o processo de oxirredução. O tempo de reação estimado para esse processo é de 9,0 min/ml de suspensão na CNTP em recipiente fechado, podendo variar em função da concentração. O óxido de grafeno quando exposto à luz excessiva sofre degradação. A Figura 1 representa o sistema da nova rota do processo em narrativa.

Figura 1 – ROTA NHK de produção de óxido de grafeno a temperatura ambiente.

RESULTADOS E DISCUSSÃO
O novo processo de produção de óxido de grafeno é caracterizado pela reação redox na mistura reacional que origina a formação de nano partículas de óxido de grafeno em suspensão no reator que opera a temperatura ambiente. Toda a carga de carbono é convertida em alótropos. As vantagens são a redução do custo energético, redução na geração de resíduos, controle das etapas de produção e reprodutibilidade do processo. A Figura 2 mostra o produto final em suspensão aquosa (A) cuja concentração mássica do produto obtido foi de aproximadamente de 0,600 g/ml em suspensão, as imagens (B) e (C) são o MEV e o DRX do produto obtido pelo novo método.
Figura 2 – (A) Nanopartículas de OG em suspensão aquosa, (B) MEV e (C) DRX da amostra.

A respeito dos testes para caracterização por espectroscopia Raman da amostra de carbono verificou que amostra apresenta elevada sensibilidade às radiações empregadas, o que resulta em sua degradação durante a irradiação com laser, mesmo em potência mínima (Figura 3) indicando que a amostra é fotossensível e pode formar outros alótropos do carbono a exemplo do carbono amorfo. Figura 3 – Imagens de microscopia óptica em aumento de 100x da Amostra de OG antes e após irradiação por laser para obtenção do espectro Raman nos comprimentos de onda (A) 532,0 nm, (B) 633,0 nm e (C) 785,0 nm.

Devido à sensibilidade da amostra, espectros Raman foram adquiridos com tempo curto de aquisição (50 ms) e 10 acumulações de maneira a diminuir o tempo de exposição à radiação do laser. Desta maneira, a qualidade dos espectros, razão sinal ruído, é baixa (Figura 4). O padrão espectral na página seguinte, para uma mesma radiação excitante, varia de acordo com o ponto de análise, indicando que a amostra não é homogênea (Figuras 4B e 4C) podendo conter óxido de grafeno e outros alótropos do carbono. Os espectros apresentados nas Figuras 4A e 4B apresentam duas bandas largas em aproximadamente 1350 cm-1 e 1580 cm-1 . Estas bandas podem ser atribuídas às bandas G e D de compostos sp2 de carbono como o óxido de grafeno, respectivamente (Dresselhaus et all. , 2010). Estas bandas também são observadas nos espectros de carbono amorfo (Marton et all., 2013). Para os espectros nas radiações 532,0 nm e 633,0 nm (Figura 4A e 4B) a banda D (~1380 cm-1 ) é mais intensa que a banda G (~1350 cm-1 ). Esta razão de intensidade está de acordo com aquela observada para compostos grafíticos, tais como óxidos de grafeno (Stankovich et all., 2007). A elevada largura das bandas G e D indica a presença de carbono amorfo. Os compostos sp2 de carbono (grafite, OG, grafeno, nanotubos de carbono, fulerenos) apresentam efeito Raman ressonante. No efeito Raman ressonante, a energia do fóton da radiação excitante é comparável ou mesmo coincidente com a energia de transição eletrônica da molécula em estudo (cromóforo). Neste caso, ocorre uma intensificação na ordem de 105 vezes das bandas associadas aos modos vibracionais do cromóforo. Por conta disso, não é possível afirmar, a partir dos espectros Raman, qual a proporção entre o óxido de grafeno e o carbono amorfo presentes na amostra analisada.

 

A amostra apresenta elevada sensibilidade ao laser empregado para caracterização por espectroscopia Raman. Os espectros Raman nas radiações excitante 532,0 nm e 633,0 nm apresentam bandas largas em aproximadamente 350 cm-1 e 1580 cm-1 , sendo a segunda mais intensa que a primeira. Tais resultados indicam que a amostra contem compostos do tipo grafítico (característico do óxido de grafeno) e carbono amorfo, porém não permite determinar se as estruturas grafíticas de óxido de grafeno estão presentes em elevada concentração na amostra devido ao efeito Raman ressonante. Este fato mostra a oportunidade de melhoria nas próximas etapas do nosso trabalho.

CONCLUSÕES
O novo método produz óxido de grafeno à temperatura ambiente.
AGRADECIMENTOS
-Deus pelos desafios que a vida impôs.
-Minha Família pelo apoio e confiança depositados neste trabalho.
-IF/UFBA e ao DEQ/UFCG pelas caracterizações do MEV e DRX respectivamente.

REFERÊNCIAS
Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbono
nanotubes and graphene Raman Spectroscopy. Nano letters, v. 10, p. 751-758, 2010.
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yong, D.; Piner, R.; Veldmakanni, A.; Juerg, I.; Tutuk, E.;
Banerjee, S. K.; Colombo, L.; Ruoff, R. S.; Science, p.324 e p.1312, 2009.
Marton, M.; Vojs, M.; Zdravecká, E.; Himmerlich, M.; Haensel, T.; Krishock, S.; Michiniak, P.;
Vesely, M.; Redhammer, R. Raman spectroscopy of amorphous carbono prepared by pulsed arc
discharge in various gas mixture. Journal of Spectroscopy, v. 2013, 6p. 2013.
Mehl, Hiany. The effect of variation of reactional parameters in the preparation of graphene by
oxidation and reduction of graphite. Quím. Nova, vol.37, n.10, pp.1639-1645. 2014.
Stankovich, S.; Dikin, D.A.; Piner, R.D; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen,
S.T.; Rouff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated
grafite oxide. Carbon, v. 45, p. 1558-1565, 2007.
Zarbin, Aldo J. G. e Oliveira, Marcela M.. Carbon nanostructures (nanotubes and graphene): Quo
Vadis?. Quím. Nova, vol.36, n.10, pp.1533-1539. 2013.

 

Fonte: www.confea.org.br/media/contecc2016/quimica/novo%20processo%20de%20produção%20de%20òxido%20de%20grafeno%20à%20temperatura%20ambiente.pdf

Fonte: https://www.youtube.com/watch?v=h5aeVZzsvKY

Brasileiro desenvolve nova arquitetura para processadores quânticos

Quando se pensa no conceito de processadores quânticos, logo vem à cabeça um computador ultramoderno, com altíssima tecnologia. Porém, eles ainda não são acessíveis, já que o processo de produção ainda é extremamente difícil e caro.

Porém, pesquisadores australianos e o brasileiro Guilherme Tosi, que trabalham na University of New South Wales, criaram um novo conceito para a construção desses chips, que podem ser desenvolvidos a partir do silício, sendo muito próximo ao uso já existente em outros dispositivos.

O processador quântico de silício funciona em torno de qubits “flip-flop”, ou seja, afastam o elétron do núcleo e usam os eletrodos na parte superior. Isso significa que eles podem ser controlados com sinais elétricos, ao contrário dos conduzidos magneticamente – como acontece hoje.

 

Diferente dos circuitos desenvolvidos pela IBM e pela Google, o novo conceito é construído a uma distância em nanômetros, de maneira que continuem entrelaçados, o que torna o processo mais fácil na hora da produção, e sem interferir no estado dos qubits.

Por sua vez, os circuitos feitos pelas gigantes da tecnologia também contam com a facilidade de condução dos dados, porém podem ter um tamanho maior do que se imagina.

Apesar de ser uma ideia promissora, ela ainda está no papel. Os pesquisadores envolvidos no projeto já estão iniciando a primeira empresa de computação quântica da Austrália e, caso a teoria se aplique, em breve teremos supercomputadores quânticos acessíveis.

 

Fonte: https://www.tecmundo.com.br/ciencia/122183-brasileiro-desenvolve-nova-arquitetura-processadores-quanticos.htm

 

Sistema de correção de postura sentada em tempo real com base em sensores de pressão têxteis eletrônicos altamente duráveis ​​e laváveis

 

Destaques

•  Foi desenvolvido um sistema de correção de postura assente em tempo real com base em sensores de pressão têxtil altamente duráveis ​​e laváveis.
• A condução de fibras de liga Ni-Ti revestidas com elastômero de poliuretano resultou em sensores de pressão têxtil altamente duráveis ​​e laváveis.
• Ao analisar a pressão detectada nas diferentes posições sob o quadril, coxa e costas, sete tipos de posturas de sessão foram classificadas com sucesso.
• A exibição em tempo real em um monitor de mudanças na postura sentada, que faz os usuários reconhecer e corrigir o equilíbrio corporal, foi simulada.

 

 

Abstract

Foi demonstrado um sistema de correção de postura sentada em tempo real com base em sensores de pressão têxtil altamente durável e laváveis. Os sensores de pressão têxtil consistiram na condução de fibras de liga de Ni-Ti com uma excelente resistência à fadiga e um elastômero de poliuretano sensível à pressão resultou em mudança de capacitância confiável por uma pressão aplicada em uma faixa de 10 a 180 kPa com uma sensibilidade de 2,39 kPa -1. O desempenho sensitivo foi mantido em 100%, mesmo após a repetida ação de sentar mais de 1000 vezes e a dura lavagem na solução detergente. Ao analisar a pressão detectada nas diferentes posições sob o quadril, coxa e costas, sete tipos de posturas sentadas, incluindo a sessão vertical, sentado com uma perna cruzada, e sentado com as duas pernas levantadas foram classificadas com sucesso. Finalmente, a exibição em tempo real em um monitor das mudanças na postura sentada foi simulada para permitir aos usuários reconhecer e corrigir o equilíbrio corporal.

Palavras-chave

  • Sensor de pressão têxtil lavável ;
  • Fibras de liga Ni-Ti revestidas com poliuretano;
  • Sensor do tipo capacitância ;
  • Correção de postura sentada

 

Fonte: https://www.sciencedirect.com/science/article/pii/S0924424717312815 

DNALinux Uma solução Linux para Bioinformática

Uma solução Linux para Bioinformática

DNALinux é uma máquina virtual com software bioinformático pré-instalado.
NOVO: Python de Bioinformática (Py4Bio) edição. Ir para página de download .

DNALinux VD: Py4Bio edição

DNALinux Virtual Desktop Py4Bio está pronto !. Esta edição é chamado Py4Bio porque é a distribuição Linux incluído no livro Python para Bioinformática .

Tela1Programas comuns de desktop usados em Bioinformática estão incluídos no DNALinux.Usando VMWare você pode executar programas Linux e Windows lado a lado.

Screen2DNALinux também é um servidor web. Você não tem que configurar um servidor web Apache e instalar programas CGI desde DNALinux tem-los pré-instalado e pronto para ser executado. Com um servidor, você pode fazer um BLAST a partir do seu computador host.

O que é DNALinux Virtual Desktop (VD)?

DNALinux VD é uma máquina virtual pré-configurada (VM) com aplicações direcionadas à bioinformática (análise de DNA e proteína). Esta máquina virtual é executado no topo da livre VMWare Player . Esse player pode ser executado em máquinas Windows e, como a máquina virtual funciona dentro do player, tudo o que você faz com DNALinux VD não toca no computador host para que você possa ter dois ambiente de trabalho separado (DNALinux e Windows juntos no mesmo computador).

Que software está disponível no DNALinux?

Além dos programas habituais do Linux, o software Bioinformatics está incluído, como: ApE-A Plasmid Editor, Biopython, Blast, Emboss, FinchTV, NCBI Toolkit, Polyxmass, primer3 (e uma interface web, primer3plus), Rasmol, Readseq e muitos mais . Veja aqui a lista completa .

Requisitos

Hardware

  • CPU Pentium IV ou melhor
  • 1 Gb de RAM
  • 20 GB de espaço em disco

Programas

Citando DNALinux

Use esta referência:

Bassi, Sebastian e Gonzalez, Virgínia. DNALinux Virtual Desktop Edition. Disponível em Nature Precedings <http://dx.doi.org/10.1038/npre.2007.670.1&gt; (2007)

Para citar um pacote em particular (como grave, BLAST, biopython), vê no software instalado página.

Install instructions

  1. Download the torrent file.
  2. Download DNALinux using the torrent with a bittorrent compatible program like “Bittorrent”, Bittorrnado, Vuze (see here for a complete list)
  3. Download VMWare Free Player
  4. Download 7zip uncompressor
  5. Uncompress DNALinux.7z using 7zip and play the vmk file with VMWare Player.

Direct download in RapidShare (12 parts):

Instruction for files downloaded from Rapidshare:

To join the parts in Windows:

copy /b dbasea* dnalinux.7z

To join the parts in Linux:

cat dbasea* > dnalinux.7z

MD5 checksum: f75e88f48e08161be62b70a8ef465e17

Nanotecnologia brasileira para remover poluentes radioativos recebe patente

Paramagnetismo

A Comissão Nacional de Energia Nuclear (CNEN) obteve uma patente pela invenção de um nanomaterial superparamagnético.

O nanomaterial pode ser usado para remover poluentes metálicos e tóxicos, incluindo os radioativos, presentes nos efluentes industriais.

O paramagnetismo é a propriedade de determinados materiais, inicialmente desmagnetizados, de adquirir uma forte magnetização a partir da aplicação de um campo magnético externo.

Composto de partículas de magnetita em escala nanométrica, o material patenteado representa uma alternativa mais barata e mais eficiente do que os métodos existentes para tratamento de efluentes.

O invento foi desenvolvido pelas pesquisadoras Mitiko Yamamura e Ruth Luqueze Camilo, do Instituto de Pesquisas Energéticas e Nucleares (IPEN), e pelo pesquisador Luiz Carlos Sampaio Lima, do Centro Brasileiro de Pesquisas Físicas (CBPF).

nanoparticulas-superparamagneticas

Remoção de poluentes

A técnica consiste na remoção das nanopartículas, juntamente com os poluentes que a elas se agregam, usando o campo magnético produzido por um ímã.

As nanopartículas magnéticas têm sua superfície revestida por uma fina camada de material polimérico e um agente extrator, de modo a serem funcionalizadas e se tornarem receptoras seletivas de determinados íons ou moléculas (orgânicas).

Na invenção dos três pesquisadores brasileiros, as nanopartículas são utilizadas para remover íons de urânio de meio aquoso.

Como explica Sampaio, as nanopartículas magnéticas são amplamente conhecidas pela sua propriedade de purificar soluções e já bastante utilizadas nos campos da biomedicina, da biologia molecular, do diagnóstico médico e da química.

As partículas descritas na invenção de que ele participou são seletivas para íons metálicos tri, tetra e hexavalentes de soluções altamente ácidas.